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A deta il ed di,cussion of convergence of Newton's method employed for calculating the composi­
ti on of coexisting phases is carried out, and a never-failing-IO-converge method is proposed. The 
proced ure is simpl er and more reliable than iterati on method s of the third order. 

in our work t, Newton's method was applied to the calculation of composition 
of coexisting liquid phases of N-component system. The equilibrium and balance 
conditions have a form of a system of nonlinear equations 

In ali) = In C1 j (X) , i = ] ,2, ... , N 

(1 - cp) Xj + qJXj = W j , i = ],2, .. . , N - 1 , (1) 

where (lj is the activity of the i-th substance, x = (Xl ' X2, . .. , XN- l) and x = (Xl' 
X2 , ••. , xr-.-J) is the vector of mole fractions in the first and the second liquid phase, 
respectively, w = (WI ' W2, ... , WN - l ) is the given vector of overall composition, and 
the parameter cp, cp E <0, 1), indicates the relative magnit ude of the second phase. 
System of equations (1) is a system of 2N - 1 equations for 2N - I unknowns 
X, x and cp. Methods have been proposed 1 which make it possible to determine the 
solution of system (1) if, as the first approximation of equilibrium composition, an 
arbitrary pair of coexisting points, i.e. the points Xl and Xl, is chosen for which the 

first N equations of system (1) hold. ]n practice it means that, as the first approxima­
tion of solution of system (1), it is possible to choose a solution of problem (1) with 
another vector of overall composition VI, and the norm II w - w llneed not be a small 
number. The method proposed makes it possible to carry out the calculation of 
system (1) for a number of different overall compositions, the result of foregoing 
calculation serving as the first approximation of next calculation. It was as well re­
commended in work l that the compositions of coexisting phases of the corresponding 
binary hetelOgeneous system should be used as the first approximation at the begin­
ning of this numerical process. The solution of system (1) for binary system (N = 2) 
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is consequently important not only for obtaining information on the given binary 
system but also as an input value for multicomponent calculations. 

In thi s work we deal with the solution of system (1) for N = 2. It will be shown that 
the convergence o f Newton's method depends to a great extent on the values of the 
nrst a pproxim a tion, even in the cases when the values of the first approximation lie in 
the homogeneo us r eg ion and the r elaxa ti on (reducing, da mpi ng) parameter is used. 
Further, an always convergent method is proposed which in the vicinity of the solu­
tion turn s continuou sly into class ical N ewton's method . 

Discuss ion of Newton's M ethod of Solution of System (1) 

In case o f N = 2 it is poss ible to solve fir st the system of nonlinear equation s 

In alxl) = In alxl) , 

In UlXI) = In ai-Xl)' 

and the parameter (p can then be determined from the balance equation 

(2) 

(3) 

The system of equations (2) has besides the physical solution i\ =l= Xl' an infinite 
number of trivial so lutions x\ = x l' Thu s, it is possible to expect a priori that tbe 
main task will consist in ensuring convergence of the numerical process to the physical 
so lution, especially in the region of critical point , where the physical solution limits 
to the trivial one. 

When using Newton's method to solve system (2), we obtain in the i-til iterat ion 
step the system of linear equations 

(0 In al lax l ) t1x I - (a In Gl/aXd t1Xl = In (Gl ial)' 

(a In a2laXl) t1xl - (a In Q21aXl ) t1Xl = In (Gl la2) ' (4) 

where t1,XI = .Xl ,i+l - Xl ,i ' t1.\'t = X1 ,i+l - Xl,i ' Xl,i' Xu being the i-th approxi­
mation of equilibrium composition of coexisting phases. The values of derivatives and 

right-hand sides are determined at the point Xl ,i or Xl ,i' For the sake of simplicity 
we denote ill = al(xl) and the like. 

Between the dimensionless Gibbs energy of mixing G, G = GM/(RT) and the acti­
vity of i-th substance hold in binary system the following relations2

-
s 

In a l = G + x2G1, In a2 = G - Xl Gl , 

a lnaJ/ax l = x2Gll, alna2/aXl = -xlGll, 
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G(O) = G(l) = 0 , 

lim Gl = - CJ), lim Gl Cf) , (5) 

where Gl = DG/iJx j , GIl = iJl G/Dx;, X2 = 1 - XI , and all the derivatives arc taken 
at constant temperature and pressure. A typical diagram of the dependence of fun c­
tion G = G(x 1) for a partially miscible system is given in F ig. I. The tangent construct­
ed at a general non-equilibriulll point Xl intercept s segment lines of the length In az 
and In aj on the axes Xj = 0 and Xl = I, respectively. Analogou s statement ho ld s 
for the point Xl ' From relati on (2) and Fig. 1 follows the well-known therm odyna mic 
knowledge that the lclJ1gent s in the diagram of function G constructed at cquilibrium 
points are identical. In the homogenc ous and metastable regi ons, the condition o f 
therm odynamic stability holds which has in the ca se considcJ ed the form 3 

- 5 

Gll > O. (6) 

If the condition of therm odynamic stability (6) applies in the whole concentration 
interval (0,1), i.e. the so lutioll consid ered is homogeneous in the entire concentration 
range, then system (2) has naturally nO physical so lution Xl 9= Xl ' lfthe cond ition (6) 
does not hold in the entire concentration interva l, then, in a general case, more so lu­
tion s o f system of equatioJ; s (2) may ex ist for which Xl 9= Xl hold s. One of such cases 
when ~ i x pairs (Xl ' Xj), Xl 9= Xl exi st which sati sfy system of equations (2), is illu stra­
ted in Fig. 2. The physical so luti on is then such a pair which is connected with the 

, I 

I 
line, 

I 
I 

i !no2 ; . 1 _ 

~ 'l lno, 
o x, ---~ -- x'--, - -x,- --'-10 

FIG. I 

Diagram of the G(x 1) function 
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lowest value of Gibbs energy of the system. (The given pair is designated in Fig. 2). 
The diagram of the fUllctioll G in F ig. 2 is a consequence of incorrect description of 
the concentration dependence of activity which in actual cases arises e.g. when using 
the NRTL cq uation 6

•
1

. These "pathological" cases will not be dealt with in this 
work, and we sha ll a lways assume that system of equations (2) has just one physical 
solution, or saying it in other words, that the function G(Xl) has just two inflex points 
in the interval (0, 1). 

Inserting the relations involved in Eqs (5) into system of equations (4) we get 

(I - .xl) Gll ~Xl - (1 - Xl) GIl ~Xt = G + (1 - Xl) Gl - G - (1 - Xl) Gl, 

-xlGll ~'\'l + xJG Il ~Xt = G - xlGl - G + xl GI , (7) 

where G = G(x l ), GI = Gl(x l ), GIl = GII(x J ) and in an analogous way for the 
second phase. The determinant of matrix of system (7) is equal to (Xl - Xl) GllGI!. 
This fact is in harmony with work 1 where it was proved for an N-component system 
that the determinant of matrix which originates from the so lution of system (1) by 
Newton's method is zero on the spinoda l curve (surface). Applying the Cramer rule 
to system (7) we o btain the resulting relations 

~il = (t - (1) /G11, ~Xt = (t - Gl)/GlJ , (8) 

where 

is the slope of line connecting the points [ '\'1' G] and [Xl' GJ. Since for a convergent 
itera tion process holds ~il ...... 0, ~XI ...... 0, Ielatiol1 (8) confirms again the formerly 
mentioned knowledge that the tangents of diagram of function G constructed at 
equilibrium points are identical , i.e. it holds 

t = Gl = GI. [equilibrium] (10) 

The simplicity of relation (8) makes possible at least partial analysis of features of 
iteration process. Without detriment of generality let us assume i l < XI and divide 
the interval (0, 1) into five subintervals I j , j = 1,2, ... ,5, where (Fig. 3) 

It = (O,a), 12 = <a,fJ), 13= <fJ,y), 

14 = (y,c5), Is =(c5,l), (II) 

il = a, Xl = c5 beil:g the equilibrium compositions of coexisting phases, and the 
function G(x t ) has an inflex point at the points Xl = fJ and XI = y, i.e. G11(fJ) = 

= Gll(y) = O. The ex istence of at least two inflex points of function G in the interval 
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(IX, (i) follows from the well-known theorem of mathematic analysis . The functi on G 

can exhibit, in principle, even more than two inflex po in ts in the int erval (IX, ()). 
This " pathologicar' case, as it has been sa id , will not be dealt with. In the intervals 

1 1 U 12 and }4 ~' 15 , the condition of thermodynamic stability (6) hold s. i. e. the 

function G is convex. ]n the int erval} 3, the function G is concave, i, e. G II ~ 0 is 

valid (the equality sign r e fers only to the points fJ and y). 
Let us consider the following cases: 

1) -X 1 ,1> X ) , l E13' Both the points which represent the filst approximation of'eom­

position of coexisting phases lie in labile region . From the concavity of function G 

in the interval 13 follows 

Gl < t < Gl, G il ~ 0, Gil ~ 0 , (12) 

and therefore it holds (see Eq. (8)) 

(13) 

with the exception of the case Xl 1 = Ii 0" Xl ) = y, when the values of increments are 
not defined. 1t is evident from ;elation (13)' and Fig. 3 that the signs of increments 

have incorrect value, and therefore in case of sufficiently low va lu es of relaxation pa­

rameters J.j, )j E (0, 1), the iteration process 

converges to the trivial non-physical solution XI = Xl' 

FIG. 3 

Important points of the G(x1 ) function 

1t Collection Czechoslovak Chem_ Commun_ [Vol. 481 [I D83J 

°r---- ---- --- -----------
! 
i 

I 
Gi 

I 
I 
! 

I 
I i I ! 

U : : ° a - -{)--- r } x, 

(14) 

10 



3182 Vonka, Novak, Ma tous : 

2) x I , I E I I' X I, I E / 5' Both the points lie in the respective ho mogeneou s regions. 
Then from the convex ity of the function G follows 

GI < I < GI , GIl > 0 , GI L > 0 , (15) 

and again Eg. (13) hold s, which in thi s case means that the increments have right 
sign s. However, later we will show that this does not gua rantee the co nvergence of 
iteration process to a physical so lution ne ither in ca~e of low values of relaxation 

parameter. 

3) The other cases. 1n remaining cases it is not possible to establi sh unambiguously 
the signs of incremen ts for different variants of the relation between values of Gl, GI 
and t can occur. Fro m the general convergence theorem of Newton's method, we 
only know that there exis ts always so me vicinity of sol ution, and as far as the first ap­
proximation of so luti on lies in thi s vicinity, then the iteration process converge~ . 

As an example let us consider a s imple sy mmetrica l system 

where it holds 

Gl = In Xl - In (I - Xl) + 2'25(1 - 2x l ), 

Gll = l/xl + 1/(1 - X l) - 4'5, 

a = 0'2244, (J = 0'3333 , y = 0' 6666, c5 = 0'7756, 

G(a) = G(c5) = -0'J408, 

G({J) = G(y) = -0'J365, G(0'5) = -0,1306. (17) 

The physica l solution are therefore the va lues Xl = 0·2244 and XI = 0·7756. Let us 
choose classical Newton's method as an iteration method: 

XI , i+l = Xu + 6x l , i = 1,2, ... , (18) 

where the prescription for increments is given by relation (8), and the relaxation para­
meter A equals unity in each iteration step. The va lu es X 1,i and x I , i for differen t sets 
of the first approximation (x I, I , X I , I ) are given in Table I. The value XI , I is in a lI cases 
an excellent approximation of so lution, whereas the value of X1, 1 lies deep in the ho­
mogeneous region. In the fi r st case (x 1 , 1 = 0'22) the calculated value of 6x 1 is slIch 
that the next approximation XI ,2 li es ill the metastable region 12 near the inflex point 
f3 = 0'3333. Therefore the va lue of the second derivative Gll at the po int XI ,2 is 
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equal to a positive but "very sma ll" number, and consequently a new value ~_\' I is 

very high. This entails that the next approximation '\1.3 lies outside the physical in­

terval (0, I). The value of XI does not change too much during the iteration process 
for the value of GIl is, at the point ,X I = 0'99, "very high" . 

Thus it is evident that it is necessary to determine the relaxation parameter )., 

}. E (0, J> so that the iteration process has the form 

(19) 

where the value of parameter I. is usually chosen in each iteration step by the fol­

lowing strategy: Let us denote D = I~x./ + l~xll. Then we require 

D < (J=).= I, 

D ~ (J =), = (JI D, (20) 

where (J is a measure of the length of iteration step . We most o ften choose (J = 0 ·05· 
The value of relaxation parameter ). may be different in each iteration step (in Eq. 

(/9) we should write more precise ly I. ; ~x I ,;' which is not done for the sake of simpli­

city), I. = 1 being always at the end of iteration process. Use of relaxation parameter 
ensures in many cases the convergence to the physical so lution , however, it is not 

always so. The impOltant iteration steps of numerical process (8), (19) and (20) and 
(J = 0·05 are given in Table II for problem (16) with the first approximation (0'22, 

0'99). The value of unknown quantity XI is changed very slowly because Gi l ~ 1 
applies. However, the value of XI changes comparatively rapidly, and already in 

the fourth iteration step lies in the labile region /3' This fact cannot be prevented 

even by choosing lower value of the relaxation parameter. If X I E 13 , i.e. Gil < 0, 
then the numerical value of ~XI depends on the dependence of t and G1. It follows 

TABLE I 

Resu lts of ite ration process (/8) for differen t input approximation 

0·22 
0'329 
1·753 

0·99 
0·967 
0·923 

0 '2244 
0'337 

- 1,570 
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from relation (8) 

t < G 1 => ~.x I > 0 , 

t > G 1 => ~X I < 0 . 

Vonka, Novak, Matous : 

(21) 

Since in the fourth iteration step the second implication holds, the va lu e of.x I "returns" 
in the fifth step back into the interva l 1 I U 12 , In next steps (except the seventh one), 

the fi rst implication ap plies in Eq. (21), ar.d the iteration process converges to the 

point .x l = XI = 'Y = 0'6660. 

Proposa l of New A lgorithm of So lution of Systel1l (2) 

It has been proved in foregoing part that both classical N ewton 's method and New­

ton's method with reduc illg parameter do not ensure convergence to the physica l 

so luti on of system (2). Then it is necessalY to choose such an iteration process that 

the values x I.i and XI,i should li e in each iteration step in the interval 1 I U 12 and 

14 u J 5' re spectively. Let us consider the iteration method 

where 

.xl,i+l = .xl,i + jit[i(XI,i' Xl,i)' 

5' 1.i + 1 = XI,; + ~~(.xl , i' XLi) , i = 1,2, ... 

t[i = G - G - G1(xl - XI)' 

If! = G - G - G1(XI - XI) , 

(22) 

(23) 

and)i, ~ are non zero parameters whose value may change during the iteration process . 

Equilibri um cOliditions (2) can be expressed in terms of relation (5) in an equivalent 

TABLE II 

Important iteration steps of proces~ (8), (19), (20) and a = 0·05 

0·22 0·99 0'359 0'904 
0'261 0·981 0'397 0 ·892 
0'301 0·971 10 0-428 0 ·873 

4 0'342 0·962 11 0·457 0· 852 
0·296 0'959 14 0·54 1 0·785 
0'331 0·944 18 0·634 0'699 
0·375 0'938 C1J 0·666 0'666 
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form If = 0 and Ifi = O. Consequently, if the it era tion process (22) converges, then 
it converges to the so lution of system (2). From the theory of iteration processes 
follows 8

.
9 that the necessary conditi o n of convergence are "small" abso lute values of 

coefficients of matrix A 

(24) 

where the relations 

(25) 

hold true, and the parameters ii and I( are considered to be constants. On inserting 
Eq. (23) into Eqs (24) and (25) we find th at 

(26) 

hold s. If we choose 

(27) 

i.e. annual the diagonal members o f matrix (26), then by in serting Eq. (27) into (22), 
we obtain Newton's meth od (18) where the prescription for increments is given by 
relation (8). Since a t the point of so lution , G1 = Gl applies, the matrix A is in case 
of Newton's method equal to a null matrix at the point of so lution. Hereof follows 
the theorem of local convergence of N ewton's meth od as it has been given formerly. 
At the beginnipg of itera tion proce ~~, however, the values of G1 and (;1 can differ 
significantly, which means that the non-diagonal members of matrix (26) differ 
substantially from ZCIO in case of Newlon's meth od. If, e.g., Xl = 0·22 and Xl = 0'99, 
then it is possible 10 establi sh easily from Eq. (l7) that Gl = -0·0057 and G1 = 2·39 . 
Providing that Xl = 0·999 is chosen, then Gl = 4·66 would hold, elc.Therefore it is 
more suitable for the type of the problem studied to choose in every iteration step 
the parameters ii and =;; so that the sum of squares of elements of matrix (26) should be 
as small as possible in each row. It is poss ible to derive easily that then 

ji = Gll(xl - .XI)!{[GJl(Xl - XI)Y + (Gl - Gly} , 

=;; = Gll(Xl - XI)!{[Gll(x l - XI)J2 + (Gl - Gly} . (28) 

In a sufficiently narrow vicinity of so lution (G 1 = G 1), relations (27) and (28) are 
identical, and in the final steps of the iteration process, alJ the advantages of Newton's 
method are retained (especially the rapidity of convergence - Newton's method is 
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a method o f second order)_ By insert ing Eq_ (28) into Eqs (22) and (23), it is possible 

to derive easily that for increments in each iteration step holds 

Ll-XI = p(x i - -X I) (t - (1) , 

LlXl = ;2(Xl - -X l) (I - Gl) , 

l:lJ: d when CI = G1, Eqs (29) and (8) are identica l. 

(29) 

The values of -X l and Xl in single iteration steps of method (29), (28) at differently 

chosen values of the first approximation in problem (16) are given in Table III. An 

advantage of itera tion process (29) is the fact that prescription (29) does not contain 
the unknown relaxation parameter whose va lue would have to be determined in each 

iteration ste p_ Iteratio n process (29) was tested for a number of variants of expressing 

the functi on G, -X I,I = e, Xu = 1 - e having been chosen as the first approximation _ 

The va lue e was chosen so that -X 1.1 E ll and X 1,1 E 15 should apply, i_ e_ the first ap­
prox imation should li e in homogeneous region_ Since the intervals II and Is are not 

known a priori, we always chose e = 0-00001 _ Except some cases when the solution 

lies near the critical point (I X I - -xd < 0-1), the proposed iteration process was 
always convergent. This fai lu re can be removed by inserting two relaxation para­

metels AI, A2 E <0, I ) of such a value that 

-Xl.i + l = -Xl.i + AIP(X 1 - -x1)(t - (1), 

XI.i +1 = ~xl.i + }'21i(X I - ~XI) (t - Gl) i = 1, 2, .. . 

TABLE III 

Iteration process (28), (29) with diffe rently chosen values of the first approximation 

~x l,i 

0-220 0-990 0-220 0-999 0-2244 0-99999 0-00001 0-99999 
0-236 0-967 0-226 0-994 0-226 0-9999 0-0001 0- 9999 
0-257 0-923 0-238 0-979 0-229 0-9992 0-0008 0-999 
0-264 0-867 0-254 0-943 0-233 0-995 0-005 0- 995 
0-233 0-817 0-267 0-880 0-242 0-982 0-020 0-980 
0-226 0-786 0-250 0-835 0-256 0-949 0-057 0-943 

0-224 0-776 0-225 0-796 0-269 0 -897 0- 11 3 0- 887 
0-225 0-778 0-256 0- 842 0-170 0-830 
0-224 0-776 0-225 0-780 0-209 0-791 

10 0-224 0-776 0-223 0-777 
II 0-224 0-776 
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hold, the generally different relaxa tio n para meters )' 1 and )2 being chosen in each 

step so that x I,i Ell U J 2 and x I , i E J .. u J 5 ' i = I , 2, .. .. In conclusion or iteration 
process obviously always )' 1 = )2 = 1 applies. This procedure is easily practicable 

ir we know the position or both inflex point s of the G function which can be found by 
so lving one equation for one unknown qua ntity Gll(x l ) = O. We have not fou nd 

a case when iteration process (30) would not converge. 

In thi s work we have dealt with thc methods or sccond order whose typical repre­
sentative is Newton's method. With the method s of second order, it is necessary to 

know in addition the first and second derivatives or runction G, i.e. GI and Gil, 
besides the runction G. We also treated itelation mcthods or third order8

.
9 whose 

principlc consists in a quadratic approximation of the lcft- and light-hand sides 

of systcm (2). The improvement as to the extcnsion of the convcrgcnce region and 
speeding-up the convergcnce of iteration process is, however, comparatively sma ll 
in comparison with the method s or second order without the relaxation parameter, 

and does not correspond to the considerable complication of iteration prescription 
and the need of knowledge or the function Gill (the third derivative or runction G). 
For thi s reason the method s of third ord er have not been dealt with in thi s work. 

CONCLUSION 

The carried out detailed analysis or use of Newton's method ror calculating the com­

posi tion or coexisting phases rrom the dependence or Gibbs energy on composition 
has shown that both class ical Newton 's method and Newton's method with relaxation 
parameter do not converge to the physical solution in some cases. Considering that 

the composition or coexisting phases in binary system can be used as the first approxi­
mation for calculating the composition or coexisting phases in multicomponenl sy­
stem, it is advantageous to have at one's di sposa l a never-railing-to-converge method 

ror binary system. This requirement is met by the newly proposed method in which 
the increments in composition of both phases are determined in terms of Eq.(2Y) or 

(30). 
It is necessary to state that the so lution or system (2), even in case or binary system, 

is not simple. The greater difficulties can be expected with muIticomponent sys tems. 

One of the necessary conditions of success is a good first approximation which can be 
established e.g. by a procedure presented in our previous paperl. 
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